Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model.
نویسندگان
چکیده
As the majority of gliomas arise through malignant transformation of astrocytes, we aimed at investigating the interaction between malignant glioma cells and astrocytes in a co-culture experimental model. For this purpose we analyzed the expression of genes and proteins involved in tumor promotion and invasion, such as glial fibrillary acidic protein (GFAP), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of MMP-2 (TIMP-2), transforming growth factor-beta1 (TGF-beta1), secreted protein acidic and rich in cysteine (SPARC), and connexin 43 (CX43). Co-cultures of human neural stem cell-derived astrocytes and U87 MG astrocytoma cells were performed in a transwell system. Gene expression was evaluated by real-time RT-PCR, and protein analysis was performed by Western blotting, SDS-zymography, and immunofluorescence. GFAP tended to be up-regulated in astrocytes co-cultivated with U87, suggesting a reactive response induced by glioma cells. CX43 mRNA tended to be down- regulated in co-cultured astrocytes, as well as the non-phosphorylated isoform at the protein level. MMP-2 mRNA tended to be up-regulated, and MMP-2 protein levels were significantly increased in astrocytes co-cultivated with U87. TIMP-2 and SPARC mRNA decreased in astrocytes co-cultivated with U87, showing lower expression in glioma cells. By contrast, SPARC protein expression was strongly induced in supernatants of co-cultured astrocytes. TGF-beta1 was not modified. Our results suggest that U87 cells elicit phenotype modifications in the neighbouring resident astrocytes very likely mediated by soluble factors. Glioma/astrocyte interaction could possibly trigger an astrocyte phenotype modification consistent with a malignant transformation, and favouring a more permissive environment for glioma cells invasion.
منابع مشابه
Gap junctions modulate glioma invasion by direct transfer of microRNA
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functi...
متن کاملInfluence of Striatal Astrocyte Dysfunction on Locomotor Activity in Dopamine-Depleted Rats
Introduction: Astrocyte dysfunction is the common pathology resulting in failure of astrocyte-neuron interaction in neurological diseases, including Parkinson’s Disease (PD). To date, only few experimental models of selective ablation of astrocytes are known. The aim of present study was to evaluate the effect of striatal injections of selective glial toxin L-aminoadipic acid (L-AA) on the loco...
متن کاملIncreased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment
Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...
متن کاملAstrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures
Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammatio...
متن کاملThree Dimensional Co-culture of Neuron and Astrocyte in a Micro-fluidic Deivce
In this paper, we describe a microfluidic platform that enables three dimensional cell culture within defined microenvironments towards a study of axon-glia interaction. The microdevice can offer both 3D axon isolation from cell body and 3D spatial cell separation between neuron and astrocyte. It consists of large fluidic channels for media supply and small channels for collagen filling as a th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Oncology reports
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2009